

Software Defined RAN (SDRAN) Evolution - Challenges & Opportunities

June 7, 2016

Alex Jinsung Choi CTO & EVP, Corporate R&D Center

- Introduction
 - Network Evolution & Operator Challenges
- Re-architecting the RAN
- SDRAN: Software-defined RAN
 - Overview & Enabling Features
- SDRAN Opportunities and Challenges
- Global Collaboration

RAN Evolution Direction

Operator Challenges

Current HW-centric mobile infrastructure leads to inefficiency when

- Re-allocating radio resources dynamically to cope with the change of traffic
- Introducing and providing customized/innovative services
- Upgrading Telco functionalities

Mobile infrastructure needs re-architecting

Re-architecting the RAN

Direction of SKT's Future RAN Architecture

- Network that fulfills diverse requirements/services at-scale
- @SCALE: Scalable, Cognitive, and Automated, Lean, End-to-end

Past & Present

Future Telco @SCALE

Re-architecting the RAN

SKT's future RAN will be "Scalable", "Cognitive", "Automated", "Lean", and "End-to-End"

Re-architecting the RAN : How?

4 Basic Principles

"Unbundling"

- Software/Hardware Decoupling
- Unbundled Function Blocks
- Control-/User-plane Separation

"Open"

- Open Source Software (OpenStack, ONOS)
- Open Hardware (OCP, TIP)
- Open Interface (Fronthaul, API)

"Softwarization"

- NFV (Network Functions Virtualization)
- SDN (Software Defined Networking)
- Orchestration & Network Slicing (XaaS)

"Cloudification"

- Cloud-based "All IT" Infra
- SDN-enabled Fabric
- Re-architecting as a Data Center

SDRAN (Software-defined RAN)

Software-based "All-IT" network infrastructure with open RAN innovations

SDRAN Architecture

Key Values

1 Open Architecture

- Network function virtualization
- Open interface (fronthaul, service API)
- CP-UP separation
- Open HW and SW

2 Operational Intelligence

- SW-based risk management
- Auto Recovery
- Reconfiguration without service interruption
- Automated operation and optimization with real-time analytics

3 Biz. Enabling Platform

- 3rd party services
- Rapid Creation of Innovative Services
- Edge service slicing

SDRAN - Enabling Features (1/5)

Network Function Virtualization

- Apply IT virtualization technologies to Telco infrastructure

Requirements

- RAN functions are virtualized on any COTS (standard servers) on the market
- Meet carrier-grade performance requirements, such as real-time processing and availability

- Open source solution, e.g., OpenStack, is already widely used in the industry
- Brings pooling gains, i.e., enables efficient use of hardware resources
- Cost-efficiency by using general purpose computing platforms

SDRAN - Enabling Features (2/5)

Open Fronthaul with Function Split

- Unbundling central unit (CU) and remote unit (RU)

Requirements

- Support flexible function split between CU and RU
- Define open interface for fronthaul, especially O&M related specifications
- Show multi-vendor interoperability with compliance testing

- Select best combination of CU and RU in terms of costs, fronthaul bandwidth, and coordination
- Cost-efficiency by leveraging wide ecosystem

SDRAN - Enabling Features (3/5)

CP-UP Separation

Requirements

- Define CP functions which can be differentiated by each operator (scheduler, admission control, handoff control, SON management, load balancing, interference management, link aggregation, multi-RAT management, etc.)
- Define open interface between CP and UP
- CP run as virtualized function
- UP run on standardized and dedicated hardware

- Separate HW expansion of CP and UP
- Enables RAN slicing
- Operators can introduce differentiated CP
- Cost-efficiency by using GPP and/or commoditized UP hardware

SDRAN - Enabling Features (4/5)

K telecom

Open API for MEC & Analytics

- Provides additional information for non-telco applications

Requirements

- Define open API for
 - 3rd party applications
 - Analytics functions
- Need to provide necessary information, for example, radio condition, user information, resource allocation, etc.

- Brings operational intelligence (risk management, automated operations, and optimization) to operators using real-time analytics
- Brings new business opportunities with mobile edge computing platform

SDRAN - Enabling Features (5/5)

Open HW/SW

- Standardize HW components and modularize SW components

Requirements

- Define common specifications for HW components such as server, switch, storage, rack, etc.
- Define open interface between SW components (L1, L2, L3)

- OCP has proven that openness and collaboration can successfully drive innovations on HW technologies for data centers
- Provides power efficiency, flexibility, and scalability
- Cost-efficiency with standardized HW components

SDRAN will complete the end-to-end "AtSCALE" network infrastructure

- Each area (access, transport, and core) is now being virtualized using technologies like NFV and SDN
- E2E orchestrator connects access, transport, and core networks, and provides managements of services in the aspect of the end-to-end connection

SDRAN

SDRAN Opportunities

Operator Opportunities provided by SDRAN

SDRAN Opportunities

New Business

- "Proximity to end users" brought by mobile edge computing platform brings new opportunities to operators to <u>create new business models</u>
- Example: Private Network
 - Local routing and traffic control for enabling the smart work service with high security

Customer Experience

- Low latency enabled by mobile edge service platform will <u>enhance the customer experience</u> in certain applications like **AR** and **VR**
- Low latency will <u>create new services</u> like selfdriving car and robotic surgery which have been impossible in existing networks

SDRAN Challenges

IT World

VS.

Telco World

Our Mission: To make the world more open and connected

Simplicity & Flexibility

Programmability Easy-to-reconfigure Open

99.999% Reliability & Availability

Stability Deterministic performance Standard

SDRAN Challenges

Challenges SDRAN needs to deal with

Global Collaboration

SK telecom is committed to open source and standards-based solutions We are carrying out various R&D projects to verify the SDRAN concept & performance in collaboration with global telco/IT companies

Gold Member OCP Telco Project

Founding Member Board Chair

ON.LAB

Member and Collaborator CORD and ONOS Partner

Global Collaboration

- Open Compute Project (OCP)
 - <u>Redesigning hardware</u> to efficiently support the growing demands on IT infrastructure
 - Break and open the black box of proprietary infrastructure, making it more <u>efficient</u>, <u>flexible</u>, and <u>scalable</u>
- 8 Projects + Telco Project (created on Jan. 2016)
 - OCP Telco Project: Focus on data center technologies for telecom companies

Global Collaboration ON.LAB

• Mobile CORD (M-CORD)

- CORD (Central Office Re-architected as a DataCenter) extended to mobile network

M-CORD Vision

- Enable virtualized/disaggregated RAN and Core
- Deploy network functions as services
- Leverage best practices of SDN, NFV and Cloud

PoC Activities

- Real-time Analytics (SON)
- PGW C-/D-plane separation
- Low-latency Video
- Network Slicing
- Connectionless Service

Summary

- > SDRAN is RAN softwarization based on open architecture and open interfaces
- > SDRAN transformation will be the key technology to
 - Simplify the network and enable cost-efficiency
 - Bring operational intelligence for network managements
 - Create new revenue streams with edge service platform
- Final goal is to develop a software-based "All-IT" telecom network infrastructure from the end-to-end perspective
- SKT is collaborating with best partners to implement the modular functions and integrate those blocks efficiently

